skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sandeep, Sai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Santhanam, Rahul (Ed.)
    The Parameterized Inapproximability Hypothesis (PIH) is the analog of the PCP theorem in the world of parameterized complexity. It asserts that no FPT algorithm can distinguish a satisfiable 2CSP instance from one which is only (1-ε)-satisfiable (where the parameter is the number of variables) for some constant 0 < ε < 1. We consider a minimization version of CSPs (Min-CSP), where one may assign r values to each variable, and the goal is to ensure that every constraint is satisfied by some choice among the r × r pairs of values assigned to its variables (call such a CSP instance r-list-satisfiable). We prove the following strong parameterized inapproximability for Min CSP: For every r ≥ 1, it is W[1]-hard to tell if a 2CSP instance is satisfiable or is not even r-list-satisfiable. We refer to this statement as "Baby PIH", following the recently proved Baby PCP Theorem (Barto and Kozik, 2021). Our proof adapts the combinatorial arguments underlying the Baby PCP theorem, overcoming some basic obstacles that arise in the parameterized setting. Furthermore, our reduction runs in time polynomially bounded in both the number of variables and the alphabet size, and thus implies the Baby PCP theorem as well. 
    more » « less
  2. Promise Constraint Satisfaction Problems (PCSPs) are a generalization ofConstraint Satisfaction Problems (CSPs) where each predicate has a strong and aweak form and given a CSP instance, the objective is to distinguish if thestrong form can be satisfied vs. even the weak form cannot be satisfied. Sincetheir formal introduction by Austrin, Guruswami, and H\aa stad, there has beena flurry of works on PCSPs [BBKO19,KO19,WZ20]. The key tool in studying PCSPsis the algebraic framework developed in the context of CSPs where the closureproperties of the satisfying solutions known as the polymorphisms are analyzed. The polymorphisms of PCSPs are much richer than CSPs. In the Boolean case, westill do not know if dichotomy for PCSPs exists analogous to Schaefer'sdichotomy result for CSPs. In this paper, we study a special case of BooleanPCSPs, namely Boolean Ordered PCSPs where the Boolean PCSPs have the predicate$$x \leq y$$. In the algebraic framework, this is the special case of BooleanPCSPs when the polymorphisms are monotone functions. We prove that BooleanOrdered PCSPs exhibit a computational dichotomy assuming the Rich 2-to-1Conjecture [BKM21] which is a perfect completeness surrogate of the UniqueGames Conjecture. Assuming the Rich 2-to-1 Conjecture, we prove that a Boolean Ordered PCSP canbe solved in polynomial time if for every $$\epsilon>0$$, it has polymorphismswhere each coordinate has Shapley value at most $$\epsilon$$, else it is NP-hard.The algorithmic part of our dichotomy is based on a structural lemma thatBoolean monotone functions with each coordinate having low Shapley value havearbitrarily large threshold functions as minors. The hardness part proceeds byshowing that the Shapley value is consistent under a uniformly random 2-to-1minor. Of independent interest, we show that the Shapley value can beinconsistent under an adversarial 2-to-1 minor. 
    more » « less
  3. Naor, Joseph; Buchbinder, Niv (Ed.)
    In the problem of scheduling with non-uniform communication delays, the input is a set of jobs with precedence constraints. Associated with every precedence constraint between a pair of jobs is a communication delay, the time duration the scheduler has to wait between the two jobs if they are scheduled on different machines. The objective is to assign the jobs to machines to minimize the makespan of the schedule. Despite being a fundamental problem in theory and a consequential problem in practice, the approximability of scheduling problems with communication delays is not very well understood. One of the top ten open problems in scheduling theory, in the influential list by Schuurman and Woeginger and its latest update by Bansal, asks if the problem admits a constant-factor approximation algorithm. In this paper, we answer this question in the negative by proving a logarithmic hardness for the problem under the standard complexity theory assumption that NP-complete problems do not admit quasi-polynomial-time algorithms. Our hardness result is obtained using a surprisingly simple reduction from a problem that we call Unique Machine Precedence constraints Scheduling (UMPS). We believe that this problem is of central importance in understanding the hardness of many scheduling problems and we conjecture that it is very hard to approximate. Among other things, our conjecture implies a logarithmic hardness of related machine scheduling with precedences, a long-standing open problem in scheduling theory and approximation algorithms. 
    more » « less
  4. null (Ed.)